sábado, 21 de julio de 2018

LAS PECULIARES MATEMÁTICAS QUE PODRÍAN SUBYACER EN LAS LEYES DE LA NATURALEZA


Nuevos hallazgos están alimentando una vieja sospecha de que las partículas y fuerzas fundamentales surgen de números extraños de ocho partes llamados "octonions".

Cohl Furey, física matemática de la Universidad de Cambridge, está encontrando vínculos entre el Modelo Estándar de la Física de Partículas y los octoniones, números cuyas reglas de multiplicación están codificadas en un diagrama triangular llamado Fano Plano.

En 2014, una estudiante graduada, de la Universidad de Waterloo, Canadá, llamada Cohl Furey, alquiló un automóvil y condujo seis horas hacia el sur hasta la Universidad Estatal de Pensilvania, ansiosa por hablar con un profesor de física llamado Murat Günaydin .
Furey había descubierto cómo construir sobre un hallazgo de Günaydin de 40 años antes, un resultado en gran parte olvidado que respaldaba una poderosa sospecha sobre la física fundamental y su relación con la matemática pura.

La sospecha, albergada por muchos físicos y matemáticos a lo largo de décadas pero que rara vez se persigue activamente, es que la peculiar panoplia de fuerzas y partículas que comprende la realidad surge lógicamente de las propiedades de los números octo-dimensionales llamados "octonions".

A medida que avanzan los números, los números reales familiares, los que se encuentran en la recta numérica, como 1, π y -83.777, simplemente ponen en marcha las cosas. Los números reales se pueden emparejar de una manera particular para formar "números complejos", estudiados por primera vez en el siglo XVI en Italia, que se comportan como coordenadas en un plano 2-D. Sumar, restar, multiplicar y dividir es como trasladar y girar posiciones alrededor del plano.

Números complejos, adecuadamente emparejados, forman "cuaterniones" 4-D, descubiertos en 1843 por el matemático irlandés William Rowan Hamilton, quien en el acto cincelado extáticamente la fórmula en el Puente Broome de Dublín. John Graves, un abogado amigo de Hamilton, posteriormente mostró que los pares de cuaterniones hacen octoniones: números que definen las coordenadas en un espacio abstracto en 8-D.

Allí el juego se detiene. En 1898 apareció la prueba de que los reales, los números complejos, los cuaterniones y los octoniones son los únicos tipos de números que se pueden sumar, restar, multiplicar y dividir. 
Las primeras tres de estas "álgebras de división" pronto sentarán las bases matemáticas para la física del siglo XX, con números reales que aparecen omnipresentemente, números complejos que proporcionan la matemática de la mecánica cuántica y cuaterniones subyacentes a la teoría de la relatividad especial de Albert Einstein. Esto ha llevado a muchos investigadores a preguntarse sobre el último y menos conocida álgebra de división. ¿Podrían los octonions tener los secretos del universo?

"Los octonions son para la física lo que las Sirenas fueron para Ulysses", dijo Pierre Ramond , físico de partículas y teórico de cuerdas de la Universidad de Florida, en un correo electrónico.
Günaydin, el profesor de Penn State, era un estudiante graduado en Yale en 1973 cuando él y su asesor Feza Gürsey encontraron un enlace sorprendente entre los octonions y la fuerza fuerte, que une a los quarks dentro de los núcleos atómicos. Una ráfaga inicial de interés en el hallazgo no duró. Todo el mundo en ese momento estaba desconcertado sobre el Modelo Estándar de la Física de Partículas: el conjunto de ecuaciones que describen las partículas elementales conocidas y sus interacciones a través de las fuerzas fuertes, débiles y electromagnéticas (todas las fuerzas fundamentales excepto la gravedad). Pero en lugar de buscar respuestas matemáticas a los misterios del Modelo Estándar, la mayoría de los físicos depositaron sus esperanzas en los colisionadores de partículas de altas energía y otros experimentos, esperando que aparezcan partículas adicionales y lleven el camino más allá del Modelo Estándar a una descripción más profunda de la realidad. "Imaginaron que el siguiente progreso vendría de algunas piezas nuevas que se dejan caer sobre la mesa”, dice  Latham Boyle , físico teórico en el Instituto Perimeter de Física Teórica en Waterloo, Canadá.
Décadas después, no se encontraron partículas más allá de las del Modelo Estándar. Mientras tanto, la extraña belleza de los octonions ha seguido atrayendo a investigadores ocasionales e independientes, incluida Furey, la estudiante canadiense que visitó Günaydin hace cuatro años. Luciendo como una viajera interplanetario, con agitados flequillos plateados que se estrechan hasta un punto entre penetrantes ojos azules, Furey garabateó símbolos esotéricos en una pizarra, tratando de explicarle a Günaydin que había extendido su trabajo y el de Gürsey construyendo un modelo octoniónico de las dos fuertes y fuerzas electromagnéticas.
"Comunicarle los detalles resultó ser un desafío un poco más de lo que había anticipado, ya que me costó trabajo hablar en términos generales", recordó Furey. Günaydin continuó estudiando los octonios desde los años 70 a través de sus profundas conexiones con la teoría de cuerdas, la teoría M y las teorías relacionadas con la supergravedad que intentan unificar la gravedad con las otras fuerzas fundamentales. Pero sus búsquedas octoniónicas siempre habían estado fuera de la corriente principal. Le aconsejó a Furey que buscara otro proyecto de investigación para su doctorado, ya que los octonions podrían cerrarle las puertas, ya que él sentía que eran para él.


Furey posando para un retrato en los terrenos de Trinity Hall, Cambridge, donde a menudo trabaja en una estera de yoga. Susannah Ireland  para Quanta Magazine

Pero Furey no se dio por vencida. Impulsada por una profunda intuición de que los octonions y otras álgebras de división subyacen a las leyes de la naturaleza, le dijo a un colega que, si no encontraba trabajo en la academia, planeaba llevar su acordeón a Nueva Orleans y recorrer las calles para apoyar su hábito de física.
Pero en cambio, Furey consiguió un postdoc en la Universidad de Cambridge en el Reino Unido. Desde entonces, ha producido una serie de resultados que conectan los octonions con el Modelo Estándar que los expertos llaman intrigante, curioso, elegante y novedoso. "Ella ha dado pasos significativos para resolver algunos rompecabezas físicos realmente profundos", dijo Shadi Tahvildar-Zadeh , físico matemático de la Universidad de Rutgers, quien recientemente visitó a Furey en Cambridge después de veuna serie de videos en línea; que ella hizo sobre su trabajo.
Furey aún tiene que construir un modelo octoniónico simple de todas las partículas y fuerzas del Modelo Estándar de una vez, y ella no ha tocado la gravedad. Ella enfatiza que las posibilidades matemáticas son muchas, y los expertos dicen que es demasiado pronto para decir qué forma de amalgamar los octonions y otras álgebras de división (si las hay) la  llevará al éxito.
"Ha encontrado algunos enlaces intrigantes", dijo Michael Duff , un teórico de cuerdas pionero y profesor en el Imperial College de Londres, que ha estudiado el papel de octonions en la teoría de cuerdas. "Desde luego, vale la pena perseguirlo. Si finalmente será la forma en que se describe el Modelo Estándar, es difícil de decir. Si lo fuera, calificaría para todos los superlativos: revolucionarios, y así sucesivamente ".
Números peculiares
Conocí a Furey en junio, en la cabaña del portero a través de la cual uno entra al Trinity Hall en la orilla del río Cam. Menuda, musculosa y vistiendo una camiseta negra sin mangas (que revelaba hematomas de artes marciales mixtas), jeans enrollados, calcetines con alienígenas de dibujos animados y zapatillas de deporte de zapatos vegetarianos, en persona era más de Vancouver que la figura de otro mundo en sus videos de conferencias. Paseamos por el césped de la universidad, agachándonos por las puertas medievales para entrar y salir del cálido sol. En un día diferente, podría haberla visto haciendo física en una estera de yoga púrpura sobre la hierba.
Furey, quien tiene 39 años, dijo que primero se sintió atraída por la física en un momento específico de la escuela secundaria, en Columbia Británica. Su maestra le dijo a la clase que solo cuatro fuerzas fundamentales subyacen a la complejidad del mundo y, además, que los físicos desde la década de 1970 habían intentado unificarlos a todos en una estructura teórica única. "Eso fue lo más hermoso que he escuchado", me dijo, con los ojos acerados. Ella tuvo una sensación similar unos años más tarde, como estudiante en la Universidad Simon Fraser en Vancouver, al enterarse de las cuatro álgebras de división. Uno de esos sistemas numéricos, o infinitamente muchos, parecería razonable. "¿Pero cuatro?", Recuerda pensar. "Qué peculiar".

Después de los descansos de la escuela, pasó al esquí, trabajando en el extranjero y entrenando intensamente como un artista de artes marciales mixtas, Furey más tarde se encontró con las álgebras de la división en un curso de geometría avanzada y aprendió cuán peculiares se vuelven en cuatro golpes. 
Cuando duplicas las dimensiones con cada paso a medida que pasas de números reales a números complejos a cuaterniones a octonions, explicó: "en cada paso pierdes una propiedad". Los números reales se pueden pedir desde el más pequeño al más grande, por ejemplo, "mientras que en el plano complejo no existe tal concepto". Luego, los cuaterniones pierden conmutatividad; para ellos, a × b no es igual a b × a. Esto tiene sentido, ya que multiplicar números de mayor dimensión implica rotación, y cuando cambia el orden de rotaciones en más de dos dimensiones, termina en un lugar diferente.
Mucho más extraño, los octonions son no asociativos, significado (a × b) × c no es igual a × (b × c). "Los matemáticos no gustan mucho de las cosas asociativas", dijoJohn Baez, físico matemático de la Universidad de California, Riverside, y experto en octonions. "Porque, aunque es muy fácil imaginar situaciones no conmutativas: calzarse los calcetines es diferente de los calcetines y los zapatos, es muy difícil pensar en una situación no asociativa". Si, en lugar de ponerte calcetines y luego zapatos, primero pones tus calcetines en sus zapatos, técnicamente aún debería ser capaz de poner los pies en ambos y obtener el mismo resultado. "Los paréntesis se sienten artificiales".
La no asociatividad aparentemente no física de los octonions ha paralizado los esfuerzos de muchos físicos para explotarlos, pero Báez explicó que su matemática peculiar también ha sido siempre su principal atractivo. La naturaleza, con sus cuatro fuerzas batallando alrededor de unas pocas docenas de partículas y antipartículas, es en sí misma peculiar. El Modelo Estándar es "peculiar e idiosincrásico", dijo.
En el Modelo Estándar, las partículas elementales son manifestaciones de tres "grupos de simetría", esencialmente, formas de intercambiar subconjuntos de las partículas que no cambian las ecuaciones. Estos tres grupos de simetría, SU (3), SU (2) y U (1), corresponden a las fuerzas fuerte, débil y electromagnética, respectivamente, y "actúan" sobre seis tipos de quarks, dos tipos de leptones, más sus antipartículas, con cada tipo de partícula en tres copias, o "generaciones", que son idénticas, excepto por sus masas. (La cuarta fuerza fundamental, la gravedad, se describe por separado, e incompatiblemente, por la teoría de la relatividad general de Einstein, que la presenta como curvas en la geometría del espacio-tiempo).
Los conjuntos de partículas manifiestan las simetrías del Modelo Estándar de la misma manera que deben existir cuatro esquinas de un cuadrado para realizar una simetría de rotaciones de 90 grados. La pregunta es, ¿por qué este grupo de simetría - SU (3) × SU (2) × U (1)? ¿Y por qué esta particular representación de partículas, con el divertido surtido de cargas de las partículas observadas, la curiosa destreza y la redundancia de tres generaciones? La actitud convencional hacia tales preguntas ha sido tratar el Modelo Estándar como una pieza fragmentada de una estructura teórica más completa . Pero una tendencia competitiva es tratar de usar los octonions y "obtener la rareza de las leyes de la lógica de alguna manera", dijo Baez.
Furey comenzó a perseguir seriamente esta posibilidad en la escuela de posgrado, cuando descubrió que los cuaterniones capturan la forma en que las partículas se traducen y rotan en el espacio-tiempo 4-D. Se preguntó sobre las propiedades internas de las partículas, como su carga. "Me di cuenta de que los ocho grados de libertad de los octonions podían corresponder a una generación de partículas: un neutrino, un electrón, tres quarks y tres quarks hacia abajo", dijo, un poco de numerología que había provocado ceño. Las coincidencias han proliferado desde entonces. "Si este proyecto de investigación fuera un misterio de asesinato", dijo, "diría que todavía estamos en el proceso de recopilar pistas".
El álgebra de Dixon
Para reconstruir la física de partículas, Furey usa el producto de las cuatro álgebras de división, RCHORpara reales, C para números complejos, H para cuaterniones y O para octonions) - a veces llamado el álgebra de Dixon, después de Geoffrey Dixon, un físico que primero tomó esta táctica en los años 1970 y '80 antes de no conseguir un trabajo de la facultad y abandonar el campo. (Dixon me envió un pasaje de sus memorias: "Lo que tenía era una intuición fuera de control de que estas álgebras eran clave para comprender la física de partículas, y estaba dispuesto a seguir esta intuición desde un acantilado si fuera necesario. Algunos podrían decir Yo sí.")

Mientras que Dixon y otros procedieron mezclando las álgebras de división con maquinaria matemática extra, Furey se restringe a sí misma; en su esquema, las álgebras "actúan sobre sí mismas". Combinado como RCHO, los cuatro sistemas numéricos forman un espacio abstracto de 64 dimensiones. Dentro de este espacio, en el modelo de Furey, las partículas son "ideales" matemáticos: elementos de un subespacio que, cuando se multiplican por otros elementos, permanecen en ese subespacio, permitiendo que las partículas permanezcan como partículas mientras se mueven, rotan, interactúan y se transforman. La idea es que estos ideales matemáticos son las partículas de la naturaleza y manifiestan las simetrías de RCHO.

Como Dixon sabía, el álgebra se divide limpiamente en dos partes: CHCO, los productos de números complejos con cuaterniones y octoniones, respectivamente (los números reales son triviales).
En el modelo de Furey, las simetrías asociadas con la forma en que las partículas se mueven y rotan en el espacio-tiempo, juntas conocidas como el grupo de Lorentz, surgen del cuaterniónico CH parte del álgebra El grupo de simetría SU (3) × SU (2) × U (1), asociado con las propiedades internas de las partículas y las interacciones mutuas a través de las fuerzas fuertes, débiles y electromagnéticas, proviene de la parte octoniónica, CO.
Günaydin y Gürsey, en sus primeros trabajos, ya encontraron SU (3) dentro de los octonions. Considere el conjunto base de octonions, 1, e 1 , e 2 , e 3 , e 4 , e 5 , e 6 y e 7 , que son distancias unitarias en ocho direcciones ortogonales diferentes: respetan un grupo de simetrías llamado G2, que pasa a ser uno de los raros "grupos excepcionales" que no se pueden clasificar matemáticamente en otras familias de grupos de simetría existentes. La conexión íntima de los octonions con todos los grupos excepcionales y otros objetos matemáticos especiales ha aumentado la creencia en su importancia, convenciendo al eminente medallista de Fields y al matemático ganador del Premio Abel.Michael Atiyah , por ejemplo, que la teoría final de la naturaleza debe ser octoniónica. "La teoría real a la que nos gustaría llegar", dijoen 2010, "debería incluir la gravedad con todas estas teorías de tal manera que la gravedad se vea como una consecuencia de los octonions y los grupos excepcionales". Añadió: "Va a ser difícil porque sabemos que los octonions son difíciles, pero cuando lo hayas encontrado, debería ser una teoría hermosa, y debería ser única".
Mantener e7 constante mientras se transforman las otras unidades de octonions reduce sus simetrías al grupo SU (3). Günaydin y Gürsey utilizaron este hecho para construir un modelo octoniónico de la fuerza poderosa que actúa sobre una sola generación de quarks.



Revista Lucy Reading-Ikkanda / Quanta

Furey ha ido más allá. En su trabajo publicado más reciente, que apareció en mayo en The European Physical Journal C , consolidó varios hallazgos para construir el grupo de simetría completo del Modelo Estándar, SU (3) × SU (2) × U (1), para una sola generación de partículas, con las matemáticas produciendo la matriz correcta de cargas eléctricas y otros atributos para un electrón, neutrinos, tres quarks ascendentes, tres quarks descendentes y sus antipartículas. Las matemáticas también sugieren una razón por la cual la carga eléctrica se cuantifica en unidades discretas, esencialmente, porque los números enteros son.

Sin embargo, en la forma de organizar partículas de ese modelo, no está claro cómo extender naturalmente el modelo para cubrir las tres generaciones completas de partículas que existen en la naturaleza. Pero en otro nuevo documento que ahora circula entre expertos y está siendo revisado por Physical Letters B , Furey usa COpara construir dos simetrías ininterrumpidas del Modelo Estándar, SU (3) y U (1). (En la naturaleza, SU (2) × U (1) se descompone en U (1) por el mecanismo de Higgs, un proceso que imbuye partículas con masa.) En este caso, las simetrías actúan en las tres generaciones de partículas y también permiten por la existencia de partículas llamadas neutrinos estériles, candidatos a la materia oscura que los físicos están buscando activamente ahora. "El modelo de tres generaciones solo tiene SU (3) × U (1), por lo que es más rudimentario", me dijo Furey, con la pluma posada en una pizarra blanca. "La pregunta es, ¿hay una manera obvia de pasar de la imagen de una generación a la imagen de tres generaciones? Creo que hay ".

Esta es la pregunta principal que ella está buscando ahora. Los físicos matemáticos Michel Dubois-Violette , Ivan Todorov y Svetla Drenska también están tratando de modelar las tres generaciones de partículas usando una estructura que incorpora octoniones llamada el excepcional álgebra de Jordan. Después de años trabajando solo, Furey está empezando a colaborar con investigadores que adoptan diferentes enfoques, pero ella prefiere quedarse con el producto de las álgebras de cuatro divisiones, RCHO, actuando sobre sí mismo. 
Es lo suficientemente complicado y proporciona flexibilidad en las muchas formas en que se puede fragmentar. El objetivo de Furey es encontrar el modelo que, en retrospectiva, se sienta inevitable y que incluya la masa, el mecanismo de Higgs, la gravedad y el espacio-tiempo.

Ya existe una sensación de espacio-tiempo en las matemáticas. Ella encuentra que todas las cadenas multiplicativas de elementos de RCHOpuede ser generado por 10 matrices llamadas "generadores". Nueve de los generadores actúan como dimensiones espaciales, y el 10, que tiene el signo opuesto, se comporta como el tiempo. La teoría de cuerdas también predice 10 dimensiones espacio-temporales, y los octonions también están involucrados allí. Si la manera en que el trabajo de Furey se conecta con la teoría de cuerdas queda por desconcertar.
Entonces su futuro Ella está buscando un trabajo de la facultad ahora, pero en su defecto, siempre hay pistas de esquí o el acordeón. "Los acordeones son los octonions del mundo de la música", dijo, "trágicamente incomprendida". Añadió: "Incluso si persiguiera eso, siempre estaría trabajando en este proyecto".
La teoría final
Furey en su mayoría se opuso a mis preguntas más filosóficas sobre la relación entre la física y las matemáticas, como si, en el fondo, son una y la misma. Pero le fascina el misterio de por qué la propiedad de la división es tan importante. Ella también tiene una corazonada, que refleja una alergia común al infinito, que R C H O es en realidad una aproximación que será reemplazada, en la teoría final, por otro sistema matemático relacionado que no involucra el continuo infinito de números reales.

Eso es solo hablar de intuición. Pero con el modelo estándar pasando las pruebas a la perfección asombrosa, y sin nuevas partículas iluminadoras que se materialicen en el Gran Colisionador de Hadrones en Europa, una nueva sensación está en el aire, inquietante y emocionante, dando paso a pizarras blancas y pizarras. 
Existe la sensación creciente de que "quizás todavía no hayamos terminado el proceso de ajustar las piezas actuales", dijo Boyle, del Instituto Perimeter. Califica esta posibilidad de "más prometedora de lo que mucha gente cree", y dijo que "merece más atención de la que recibe actualmente, así que estoy muy contento de que algunas personas como Cohl lo estén persiguiendo seriamente".

Boyle no ha escrito sobre la posible relación del modelo estándar con los octonions. Pero como tantos otros, admite haber escuchado su canción de sirena. "Comparto la esperanza", dijo, "e incluso la sospecha de que los octonions pueden terminar desempeñando un papel, de alguna manera, en la física fundamental, ya que son muy bellos".
Fuente: QUANTA Magazine Natalie Wolchover Editora / Escritora Senior- 20. Julio.2018


Traducción libre de Soca



jueves, 19 de julio de 2018

EL VALOR DEL AGUA


El Siguiente, es el comentario del Profesor Leonardo Vanzi que aparece en Comentarista.Emol.com relacionada con el Valor del Agua.    

Leonardo Vanzi, Doctor en Astronomía en la Universidad de Florencia (Italia). Fue investigador postdoctorado en la misma universidad, en la Universidad de Arizona y en el Observatorio Europeo Austral. Fue astrónomo en los observatorios La Silla y Paranal y actualmente es Profesor asociado del Centro de Astro-Ingeniería de la Pontificia Universidad Católica de Chile en el área de instrumentación astronómica. Dirige el Laboratorio de Instrumentación del Centro de Astro Ingeniería UC


Un litro de gasolina vale aproximadamente 1 dólar, mientras que un kilo de cobre 7 dólares. El oro es tan caro que su precio se indica por gramo y llega a los 40 dólares por gramo.

¡Claro!, son bienes relativamente escasos. El agua, en cambio, abunda más y su valor se da por metro cúbico, llegando a menos de 400 pesos los mil litros. ¡Es muy bajo el valor del agua!

Esta visión cambia bastante si salimos de nuestro hermoso planeta azul, donde el agua cubre más del 70% de la superficie.
Lejos de la Tierra, el elemento clave para el desarrollo de la vida, se hace más escaso. Incidentalmente, el agua no es un elemento, sino una substancia cuya molécula está constituida por dos átomos de hidrógeno y uno de oxígeno. Es esta configuración la que hace al agua tan valiosa para la vida.
Su molécula posee un “momento de dipolo eléctrico”, es decir que la carga eléctrica no está uniformemente distribuida, sino que tiene más carga positiva por un lado y más negativa por otro. Por ello el agua es un excelente solvente, o sea otras substancias se disuelven con facilidad en ella porque el dipolo eléctrico “rompe” los enlaces iónicos que son de naturaleza eléctrica y que mantienen unidos elementos químicos y moléculas. Así, muchas substancias se disuelven en agua, son transportadas, puesta en contacto y terminan reaccionando entre sí.

Tan esquiva es el agua fuera de la Tierra que, mientras conocemos con buena precisión las abundancias de los elementos que podemos detectar con relativa facilidad – en los espectros de las estrellas o del medio interestelar – sabemos relativamente poco sobre la abundancia del agua. En la Tierra se estima que hay aproximadamente un millón cuatrocientos mil millones de metros cúbicos de agua. Esto, en parte, debido a que nuestro planeta se sitúa en la zona habitable del Sol donde el agua puede existir en su estado líquido, lo que ha permitido el desarrollo de la vida.

Fuera de la Tierra, rastros de agua han sido detectados en los planetas mayores y en algunas de sus lunas, incluyendo nuestro satélite natural.
Se piensa que, por ejemplo, la luna de Júpiter, Europa, alberga un extenso océano de agua bajo su superficie helada, en el cual podrían, incluso, hallarse formas de vida. Estudiar la presencia de agua en Marte es una de las grandes tareas de las misiones no tripuladas enviadas a este planeta, las que han tenido hallazgos muy interesantes, los que son fundamentales desde la perspectiva de establecer asentamientos humanos en ese planeta.

¿De dónde viene el agua? El hidrógeno es un elemento primordial, este se formó poco después del Big Bang. El oxígeno, en cambio, junto con muchos otros elementos, es el resultado de los procesos de fusión nuclear que ocurren en el interior de estrellas macizas.
Y ¿el agua? Podemos detectar su presencia a través de la emisión de líneas espectrales en la banda infrarroja. Con este tipo de observacionesse ha observado la presencia de agua en los discos circumestelares – el material que rodea muchas estrellas jóvenes y que eventualmente puede originar sistemas planetarios –. Esto hace pensar que el oxígeno y el hidrógeno podrían juntarse en la superficie de partículas sólidas, a las que los astrónomos llaman “polvo”, y ahí originar la famosa molécula.
¿Y cómo habría llegado el agua a la Tierra? Se piensa que, en parte a bordo de cometas, los cuales sabemos contienen agua; en parte a través de protoplanetas originados en las regiones externas del Sistema Solar; y en parte a través de mecanismos que aún no se aclaran.

Muchas físicas, mucha química, mucha historia cósmica y mucho misterio y en un vaso de agua por tan solo 5 centavos de pesos.
Fuente: Comentarista.Emol.com -  19.julio.2018

AMENAZANTE ICEBERG EN GROENLANDIA



Esta imagen satelital, capturada por el Sentinel-2A el 9 de julio de 2018, muestra un enorme iceberg peligrosamente cerca de la aldea de Innaarsuit en la costa oeste de Groenlandia. 
Si el iceberg se rompe, las olas resultantes del hielo que cae podrían arrasar partes de la aldea.

Los 169 residentes de Innaarsuit están relativamente acostumbrados a ver flotar grandes icebergs, pero con un peso de alrededor de 10 millones de toneladas, este es el más grande en la memoria. Con trozos de hielo que nacen del iceberg, varios residentes fueron evacuados en medio de temores de una ruptura mayor. La planta de energía local también se encuentra en la costa, por lo que las olas también podrían cerrar el suministro de energía del pueblo. Sin embargo, hay informes recientes de que los fuertes vientos del sur han comenzado a empujar el témpano hacia el norte. La imagen también muestra varios otros icebergs grandes en los alrededores.

La Misión Copernicus Sentinel-2 es una constelación de dos satélites. Cada uno de los dos satélites lleva un innovador generador de imágenes multiespectrales de alta resolución con 13 bandas espectrales. La combinación de alta resolución, capacidades espectrales novedosas, un ancho de franja de 290 km y tiempos de revisitas frecuentes proporciona vistas sin precedentes de la Tierra y la capacidad de monitorear eventos rápidamente cambiantes como este.
Fuente: ESA Looming iceberg – 17.julio.2018

Traducción libre Soca

miércoles, 18 de julio de 2018

IMÁGENES EXTREMADAMENTE PRECISAS CON EL NUEVO SISTEMA DE ÓPTICA ADAPTATIVA DEL “VLT”

Estas imágenes del planeta Neptuno fueron obtenidos durante las pruebas del modo de óptica adaptativa de campo estrecho en el instrumento MUSE/GALACSI, instalado en el VLT (Very Large Telescope) de ESO. La imagen de la derecha está tomada sin el sistema de óptica adaptativa y la de la izquierda después de la instalación de la óptica adaptativa. Crédito: ESO/P. Weilbacher (AIP)

El VLT (Very Large Telescope) de ESO, ha llevado a cabo la primera luz de un nuevo modo de óptica adaptativa llamado “Tomografía láser” y ha captado imágenes de prueba extraordinariamente precisas del planeta Neptuno, cúmulos de estrellas y otros objetos.

El instrumento pionero MUSE en modo de campo estrecho, trabajando con el módulo de óptica adaptativa GALACSI, ahora puede utilizar esta nueva técnica para corregir las turbulencias de la atmósfera a diferentes altitudes. Ahora es posible captar imágenes desde la superficie de la Tierra en longitudes de onda visibles más nítidas que las del Telescopio Espacial Hubble de NASA / ESA.

La combinación de una gran nitidez de la imagen junto con las capacidades espectroscópicas de MUSE, permitirá a los astrónomos estudiar las propiedades de los objetos astronómicos con mucho más detalle de lo que ha sido posible hasta ahora.

El instrumento MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico de multiunidad) instalado en el VLT (Very Large Telescope) de ESO, trabaja con una unidad de óptica adaptativa denominada GALACSI.
Hace uso de las instalaciones de estrellas de guiado láser (Laser Guide Stars Facility), 4LGSF, un subsistema de la instalación de óptica adaptativa (AOF, Adaptive Optics Facility). El AOF proporciona óptica adaptativa a los instrumentos de la Unidad de Telescopio 4 del VLT (UT4). MUSE fue el primer instrumento en beneficiarse de esta nueva instalación y ahora tiene dos modos de óptica adaptativa: el modo de campo amplio y el modo de campo estrecho. MUSE  y GALACSI en modo de campo amplio ya proporcionan la corrección sobre un campo de visión de 1.0 minuto de arco, con píxeles de un tamaño de 0,2" por 0,2". Este nuevo modo de campo estrecho de GALACSI cubre un campo de visión mucho más pequeño, de 7,5 segundos de arco, pero con píxeles mucho más pequeños, de sólo 0,025" por 0,025", para explotar al máximo su resolución.

El modo de amplio campo de MUSE, junto con GALACSI en modo nivel del suelo, corrige los efectos de la turbulencia atmosférica hasta un kilómetro por encima del telescopio sobre un campo de visión relativamente amplio. Pero el nuevo modo de campo estrecho, que utiliza tomografía láser, corrige casi la totalidad de las turbulencias atmosféricas sobre el telescopio para crear imágenes mucho más nítidas, pero en una región más pequeña del cielo. La turbulencia atmosférica varía con la altitud; algunas capas degradan más el haz de luz de las estrellas que otras. La compleja técnica de óptica adaptativa de tomografía láser pretende corregir, principalmente, las turbulencias de estas capas atmosféricas. Se ha seleccionado previamente un conjunto de capas para el modo de campo estrecho de MUSE/GALACSI a 0 km (a nivel del suelo; siempre una medida importante), 3,9 y 14 km de altitud. Posteriormente, el algoritmo de corrección se optimiza en estas capas, permitiendo a los astrónomos alcanzar una calidad de imagen casi tan buena como si se utilizara una estrella guía natural y alcanzando el límite teórico del telescopio.

Con esta nueva capacidad, el telescopio UT-4 de ocho metros alcanza el límite teórico de nitidez de la imagen y ya no está limitado por las perturbaciones atmosféricas.
Es algo extremadamente difícil de lograr en el rango visible y proporciona imágenes comparables en nitidez a las del Telescopio Espacial Hubble de NASA/ESA. Permitirá a los astrónomos estudiar con un detalle sin precedentes objetos fascinantes como agujeros negros supermasivos en el centro de galaxias distantes, chorros lanzados por estrellas jóvenes, cúmulos globulares, supernovas, planetas y sus satélites en el Sistema Solar y mucho más.

La óptica adaptativa es una técnica que compensa los efectos de las turbulencias provocadas por la atmósfera terrestre, también conocido como visibilidad astronómica o seeing, un gran problema al que se enfrentan todos los telescopios terrestres. La misma turbulencia de la atmósfera que hace que las estrellas titilen a simple vista, hace que los grandes telescopios obtengan imágenes borrosas del universo. La luz que nos llega de estrellas y galaxias se distorsiona al atravesar la capa protectora de nuestra atmósfera, y los astrónomos deben utilizar tecnología inteligente para mejorar de forma artificial la calidad de la imagen.
Para lograrlo, se fijan cuatro láseres brillantes al UT4 para proyectar hacia el cielo columnas de una intensa luz anaranjada de 30 centímetros de diámetro que excitan los átomos de sodio de las capas altas de la atmósfera y crean estrellas de guiado láser artificiales. Los sistemas de óptica adaptativa utilizan la luz de estas "estrellas" para determinar la turbulencia de la atmósfera y calcular las correcciones mil veces por segundo, ordenando al espejo secundario del UT4, delgado y deformable, que modificar constantemente su forma, compensando las deformaciones que provoca la atmósfera y corrigiendo la luz distorsionada.

Vídeo: ESOcast 172 Light: Imágenes extremadamente precisas con el nuevo sistema de óptica adaptativa del VLT (4K UHD

MUSE no es el único instrumento que disfruta de unas instalaciones de óptica adaptativa. La cámara infrarroja HAWK-Iya utiliza otro sistema de óptica adaptativaGRAAL. En unos años le seguirá el potente y nuevo instrumento ERIS. Juntos, estos grandes avances en óptica adaptativa están mejorando la ya poderosa flota de telescopios de ESO, cuyo objetivo es observar el universo.
Este nuevo modo constituye también un importante paso adelante para el ELT (Extremely Large Telescope) de ESO, que necesitará tomografía láser para alcanzar sus objetivos  científicos. Estos resultados en UT4 con el AOF ayudarán a los científicos e ingenieros del ELT a implementar una tecnología de óptica adaptativa similar en el gigante de 39 metros.
Fuente: ESO 1824es -18. julio.2018

Enlaces


Traducción libre de Soca

martes, 17 de julio de 2018

LA REBELIÓN DE LAS MÁQUINAS


El aprendizaje automático se convertirá en una herramienta aún más importante cuando los científicos se actualicen al Gran Colisionador de Hadrones de alta luminosidad.


Obra de Sandbox Studio, Chicago

¿Cuándo se convierten algunos puntos dispersos en una línea? ¿Y cuándo se convierte esa línea en una pista de partículas? Durante décadas, los físicos han estado haciendo este tipo de preguntas. 
Hoy, también lo son sus máquinas.

El aprendizaje automático es el proceso mediante el cual la tarea de reconocimiento de patrones se subcontrata a un algoritmo informático. Los humanos son naturalmente muy buenos para encontrar y procesar patrones. Es por eso que puedes reconocer al instante una canción de tu banda favorita, incluso si nunca la has escuchado antes.

El aprendizaje automático toma este proceso muy humano y deja atrás el poder de la computación. Mientras que un ser humano podría reconocer una banda basada en una variedad de atributos, como el tenor vocal del cantante principal, una computadora puede procesar otras características sutiles que un ser humano podría pasar por alto. La plataforma de transmisión de música Pandora categoriza cada pieza de música en términos de 450 cualidades auditivas diferentes.
"Las máquinas pueden manejar mucha más información de la que nuestros cerebros pueden", dice Eduardo Rodrigues, físico de la Universidad de Cincinnati. "Es por eso que pueden encontrar patrones que a veces son invisibles para nosotros".

El aprendizaje automático comenzó a ser un lugar común en informática durante la década de 1980, y los físicos de LHC lo han usado rutinariamente para ayudar a gestionar y procesar datos brutos desde 2012. Ahora, con las actualizaciones de lo que ya es el acelerador de partículas más poderoso del mundo en el horizonte, los físicos están implementando nuevas aplicaciones de aprendizaje automático para ayudarlos con el inminente diluvio de datos.
"La actualización de alta luminosidad al LHC va a aumentar nuestra cantidad de datos en un factor de 100 en relación con la utilizada para descubrir el Higgs", dice Peter Elmer, físico de la Universidad de Princeton. "Esto nos ayudará a buscar partículas raras y nueva física, pero si no estamos preparados, corremos el riesgo de quedar completamente inundado de datos".

Solo una pequeña fracción de las colisiones del LHC son interesantes para los científicos. Por ejemplo, los bosones de Higgs nacen en aproximadamente una de cada dos mil millones de colisiones de protones y protones. El aprendizaje automático está ayudando a los científicos a clasificar el ruido y aislar lo que es realmente importante.
"Es como extraer gemas raras", dice Rodrigues. "Mantener toda la arena y los guijarros sería ridículo, así que usamos algoritmos para ayudarnos a identificar las cosas que parecen interesantes. Con el aprendizaje automático, podemos purificar la muestra aún más y de manera más eficiente ".

Los físicos de LHC usan un tipo de aprendizaje automático llamado aprendizaje supervisado. El principio detrás del aprendizaje supervisado no es nada nuevo; de hecho, es la forma en que la mayoría de nosotros aprende a leer y escribir. Los físicos comienzan por entrenar sus algoritmos de aprendizaje automático con datos de colisiones que ya están bien entendidas.
Ellos les dicen: "Así es como se ve un Higgs; esto es lo que parece una partícula con un quark inferior".

Después de darle a un algoritmo toda la información que ya conocen sobre cientos de ejemplos, los físicos retroceden y le asignan tareas a la computadora para identificar las partículas en colisiones sin etiquetas. Monitorean qué tan bien funciona el algoritmo y dan correcciones en el camino. Eventualmente, la computadora necesita solo una guía mínima y puede llegar a ser incluso mejor que los humanos al analizar los datos.
"Esto está ahorrando mucho tiempo al experimento LHCb", dice Rodrigues. "En el pasado, necesitábamos meses para dar sentido a nuestros datos de detectores sin procesar. Con el aprendizaje automático, ahora podemos procesar y etiquetar eventos dentro de las primeras horas después de que los grabemos ". 

El aprendizaje automático no solo ayuda a los físicos a comprender sus datos reales, sino que también les ayudará a crear simulaciones para probar sus predicciones a partir de la teoría.
Utilizando algoritmos en ausencia de aprendizaje automático, los científicos han creado versiones virtuales de sus detectores con todas las leyes conocidas de la física pre programadas. 
"El experimento virtual sigue las leyes conocidas de la física a una T", dice Elmer. "Simulamos colisiones protón-protón y luego predecimos cómo los subproductos interactuarán con cada parte de nuestro detector".
Si los científicos encuentran una discrepancia consistente entre los datos virtuales generados por sus simulaciones y los datos reales registrados por sus detectores, podría significar que las partículas en el mundo real están jugando con un conjunto de reglas diferentes a las que los físicos ya conocen.

Una debilidad de las simulaciones actuales de los científicos es que son demasiado lentos. Utilizan una serie de algoritmos para calcular con precisión cómo una partícula interactuará con cada parte del detector que golpea mientras se mueve a través de las muchas capas de un detector de partículas. 
A pesar de que solo se necesitan unos minutos para simular una colisión de esta manera, los científicos necesitan simular billones de colisiones para cubrir los posibles resultados de los 600 millones de colisiones por segundo que registrarán con el HL-LHC."No tenemos el tiempo o los recursos para eso", dice Elmer.
Con el aprendizaje automático, por otro lado, pueden generalizar. En lugar de calcular cada interacción individual de partículas con la materia a lo largo del camino, pueden estimar su comportamiento general en función de sus rutas típicas a través del detector.

"Es una cuestión de equilibrar la calidad con la cantidad", dice Elmer. "Todavía utilizaremos los cálculos muy precisos para algunos estudios. Pero para otros, no necesitamos tales simulaciones de alta resolución para la física que queremos hacer ".

El aprendizaje automático está ayudando a los científicos a procesar más datos más rápidamente. Con las actualizaciones planificadas para el LHC, podría jugar un papel aún grande en el futuro. Pero no es una bala de plata, dice Elmer.
"Todavía queremos entender por qué y cómo funcionan todos nuestros análisis para que podamos estar completamente seguros de los resultados que producen", dice. "Siempre necesitaremos un equilibrio entre las nuevas tecnologías brillantes y nuestras técnicas de análisis más tradicionales".
Fuente: SYMMETRY 17. julio.2018 – Sara Charley (Rice of the Machines)


Traducción libre de Soca